Asymptotic expansion of operator-valued Laplace transform

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Laplace Transform of Distribution-valued Functions and Its Applications

1. Notation and notions We repeat some definitions and facts, we need in our exposition but for special case. Let Q be an open set belonging to Rn. By D(Q) we denote the space {φ ∈ C∞(Q); suppφ ⊂ Kφ}, Kφ is a compact set in Q which depends on φ. D′(Q) is the space of continuous linear functionals on D(Q) the space of distributions. Every f ∈ Lloc(Q) defines a distribution, called regular distri...

متن کامل

Laplace Transform

We have seen before that Fourier analysis is very useful in the study of signals and linear and time invariant (LTI) systems. The main reason is that a lot of signals can be expressed as a linear combination of complex exponentials of the form e with s = jw. There are many properties that still apply when s is not restricted to be pure imaginary. That is why we introduce a generalization of the...

متن کامل

Laplace Expansion

For simplicity, we follow the rules: x, y are sets, N is an element of N, c, i, j, k, m, n are natural numbers, D is a non empty set, s is an element of 2Set Seg(n + 2), p is an element of the permutations of n-element set, p1, q1 are elements of the permutations of (n+ 1)-element set, p2 is an element of the permutations of (n+ 2)-element set, K is a field, a, b are elements of K, f is a finit...

متن کامل

Operator-valued tensors on manifolds

‎In this paper we try to extend geometric concepts in the context of operator valued tensors‎. ‎To this end‎, ‎we aim to replace the field of scalars $ mathbb{R} $ by self-adjoint elements of a commutative $ C^star $-algebra‎, ‎and reach an appropriate generalization of geometrical concepts on manifolds‎. ‎First‎, ‎we put forward the concept of operator-valued tensors and extend semi-Riemannian...

متن کامل

Adaptive Discrete Laplace Operator

Diffusion processes capture information about the geometry of an object such as its curvature, symmetries and particular points. The evolution of the diffusion is governed by the Laplace-Beltrami operator which presides to the diffusion on the manifold. In this paper, we define a new discrete adaptive Laplacian for digital objects, generalizing the operator defined on meshes. We study its eigen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 1974

ISSN: 0021-9045

DOI: 10.1016/0021-9045(74)90081-1